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Abstract: Anomaly detection is considered as one among the important domain in data mining. Both supervised and 

unsupervised learning methods are used in anomaly detection task. In this paper emphasis is given to distance based 

prediction of anomalies. We studied the traditional methods which involves index-based, nested-loop and cell-based 

approaches towards anomaly detection. As the size of the datasets become very large the task of detecting anomalies 

becomes computationally complex. Having the push towards big data mining, it will become more necessary to adopt 

existing anomaly detection algorithms to various distributed computing platforms. Our paper is based on a survey on 

the different strategies that can be adopted for anomaly analysis using distributed computing techniques. First we 

studied the concept of anomaly detection solving set, a subset of the input data set representing a model that can be 

used to predict anomalies. The solving set is defined using necessary number of points that helps in the detection of the 

top anomalies by taking into consideration only a subset of all the pair wise distances from the data set. Then we 

analysed the possibility of using Map Reduce framework for performing anomaly analysis. A MapReduce based 

solving set algorithm for anomaly detection using Hadoop framework is also proposed. 
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I. INTRODUCTION 
 

An anomaly is a data object that is very much different 

from the compared normal objects as if it were developed 

using a unnatural methodology. Motivation for anomaly 

analysis involves fraud detection, customer segmentation, 

customized marketing, medical treatment etc. Both 

supervised and unsupervised methods are used in anomaly 

analysis task. Using supervised learning techniques for 

anomaly analysis is less efficient as the main challenge 

involves is the presence of imbalance classes. 

Unsupervised methods uses the basic principle that an 

anomaly is expected to be far away from any groups of 

normal objects. To improve the quality of anomaly 

detection, one can get help from models for normal objects 

learned from unsupervised methods which we usually refer 

as semi-supervised learning. In a proximity based method 

an object is an anomaly if the nearest neighbors of the 

object are far away, i.e., the distance of the object is 

significantly large from the distance between most of the 

other objects in the same data set. Two major types of 

proximity-based anomaly detection techniques are 

distance-based and density-based methods. A top-m 

distance-based anomaly in a data set is an object having 

weight greater than the m
th

 largest weight, where the 

weight of a data set object is computed as the sum of the 

distances from the object to its m nearest neighbors. 

Distributed computing can be defined to the use of 

distributed systems to solve computing problems. In 

distributed computing, a problem is divided into many sub 

tasks, each task can be assigned to one or more 

computers, which can communicate to each other 

by message passing and can finally generate a single result. 

Distributed algorithms are a classification of Parallel 

algorithms, which are executed concurrently, with different 

processors executing various parts of the algorithm and the 

data and operations at one processor, is abstracted from the  

 
 

other. One of the major issues in designing and 

implementing distributed algorithms is to maintain proper 

co-ordination between parts of the algorithm and to handle 

the system failures and unreliable communications media. 

Map Reduce [16] is a distributed computing framework 

developed at Google for the analytics of large 

heterogeneous data that have been divided over many 

computers. Its programming model allows the user to 

neglect about many of the issues associated with distributed 

computing: splitting up and assigning the input to various 

systems, scheduling and running computation tasks on the 

available nodes and coordinating the necessary 

communication between tasks. Map Reduce framework 

uses terms of key-value pairs as input, which are generated 

from an input file by user-configurable rules. Map Reduce 

uses a very simple programming abstraction, which in its 

most common form, requires its user to design only two 

functions - map and reduce. Hadoop is an open source 

framework which uses the Map Reduce programming 

model for writing and running distributed applications that 

process large amounts of data.  
 

II. RELATED WORK 
 

The concept of distance-based anomaly relies on the notion 

of the neighbourhood of a point, typically, the k nearest 

neighbours, and has been first introduced by Knorr and Ng 

[1], [2]. The authors present two algorithms, the first one is 

a nested loop algorithm that runs in O(kN2) time, while the 

next one is a cell-based algorithm that has a polynomial 

time complexity with respect to  the number of points of 

the data set, but exponential with respect to  the number of 

dimensions of the data set. On the other hand, the nested 

loop approach is impractical when anomalies in large data 

sets have to be mined. In [3], a new definition of distance-

based anomaly that takes into account the whole 
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neighbourhood by considering, for each point p, the sum of 

the proximities from its n nearest neighbours, is proposed. 

An analogous definition of anomaly based on the k-nearest 

neighbours has been used in [4] for unsupervised anomaly 

detection to detect intrusions in unlabeled data. A complete 

discussion on the need, the understanding, and the 

intentional information of distance-based anomalies, as 

well as the relevant areas in which the anomaly concept can 

be applied, can be found  in [5], [6] .A parallel version of 

nested loop approach for anomaly detection  is introduced 

in[7]. Dutta et al. [8] proposed algorithms for the 

distributed computation of principal components and top-k 

anomaly detection. The concept of anomaly detection 

solving set, a subset of the input data set representing a 

model that can be used to predict anomalies, is defined in 

[9]. A distributed method for detecting distance-based 

anomalies in very large data sets is proposed in [11]. The 

possibility of using Map Reduce parallel programming 

model in many machine learning and data mining 

algorithms for big data mining is studied in [12]. A Hadoop 

Map Reduce based tool for anomaly analysis is 

implemented by Pranab Ghosh in[13] 
 

A. Definition of the Tasks 
 

In the following, we assume that any data set is a finite 

subset of a given metric space. 

Anomaly Weight: Given an object p D, the weight wk (p, 

D) of p in D is the sum of the distances from p to its k 

nearest neighbors in D. 

Top n Anomalies: Let T be a subset of D having size n. If 

there not exist objects x   T and y in (D \T) such that wk(y, 

D)>wk(x, D), then T is said to be the set of the top n 

anomalies in D. In such a case, w*=minx    wk(x, D) is 

said to be the weight of the top nth anomaly, and the 

objects in are said to be the top n anomalies in D [3]. 

Anomaly Detection Solving Set [9]: An anomaly detection 

solving set S is a subset of D such that, for each y E (D \ S), 

it holds that wk(y, S) ≤ w*, where w* is the weight of the 

top nth anomaly in D. It is found that a solving set S always 

defines the set T of the top n anomalies in D and, 

moreover, it can be used to predict unknown anomalies. 
 

B. Solving Set Algorithm [9] 
 

At each iteration the algorithm compares each object with a 

selected small subset of the complete data set objects called 

candidate set, and stores their k nearest neighbours with 

respect to the candidate set. From these stored neighbours, 

an upper limit to the actual weight of each object can thus 

be calculated. The actual weights of the candidate objects 

will be identified as they are compared with every object in 

the data set. An object with upper limit weight lower than 

the n
th 

highest weight associated with a candidate object are 

called non active as these objects cannot belong to the top-

n anomalies, while the others are called active. Random 

objects are selected as candidates in the beginning. At each 

subsequent iterations candidate set is built by selecting, 

among the active objects of the data set not already inserted 

during the previous iterations and the objects having the 

highest current weight upper bounds. During the 

computation, if an object becomes non active, then it need 

not be considered for adding into the candidate set, because 

it cannot be an anomaly. As the algorithm progresses new 

objects, more precise weights are computed and will result 

in the rise of non-active objects. The algorithm terminates 

when no more objects have to be observed. 
 

C. Distributed SolvingSet Algorithm [11] 
 

The Distributed Solving Set algorithm adopts the same 

procedure of the Solving Set algorithm. It consists of a 

main cycle executed by a controller node, which iteratively 

performs the following two tasks: 1) the basic computation, 

which is done by every node in parallel; and 2) the 

combining of the incomplete results returned by each node 

after completing its job. The computation is done by 

estimating of the anomaly weight of each object and of a 

global lower bound for the weight, below which points are 

sure to be non-anomalies. Alternate local and global 

information is considered for iteratively refining the above 

estimates. 

It can be noted while when that several mining algorithms 

deal with distributed data set by computing local models 

which are aggregated in a general model as a final step in 

the controller node, the Distributed Solving Set algorithm 

is dissimilar, since it computes the true global information 

through iterations where only selected global data and all 

the local data are involved. 

The basic operation executed at each node consists in 

the following steps: 

1) The current solving set objects are received along 

with the current lower bound for the weight of the 

top nth anomaly,  

2) Compare them with the local objects. 

3) Extract a new set of local candidate objects (the 

data points with the top weights, according to the 

current calculations together with the list of local 

nearest neighbors with respect to the solving set. 

4) Determining the number of local active objects, that 

is the data points which are having weight not 

smaller than the current lower bound.  
 

The comparison is performed in many distinct cycles, in 

order to avoid unnecessary computations. The above data 

are used in the synchronization step by the controller node 

to generate a new set of global candidates to be used in the 

following iteration, and for each of them the true list of 

distances from the nearest neighbors, to compute the new 

lower bound for the weight. 
 

D. MapReduce model for distance based anomaly 

analysis[13]. 
 

We essentially need to find the k nearest neighbors for a 

data point and find its total distance to the k nearest 

neighbors and use that as the anomaly score. A MapReduce 

programming model can be deployed for this purpose by 

[13]. The Map and Reduce parts of MapReduce are both 

defined with respect to data represented as (key, value) 

pairs. Map function takes as input (key, value) pair and 

returns a (key, value) pair as output. The logic needed to 

process the input will be defined inside the map function: 

Map (k1, v1) → list (k2, v2).The Map operation will be 

applied to every pair in the input in parallel. Then the Map 
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Reduce framework internally does a shuffle and sort phase 

in which the same key from all lists will be grouped 

together, and one group will be assigned for each key. The 

Reduce function is then applied is to each such group in 

parallel, which will finally produce a list of values which 

belongs to the same domain: Reduce (k2, list (v2)) → list 

(v3). Each Reduce call will either produces either a value  

or a null return. The final result will be the consolidated 

results from all the calls. 

Two MapReduce jobs for performing the anomaly 

detection task is proposed in [13] 

The jobs of the task are 

1) A MapReduce job to find pair wise distance between 

all data points. 

2) A MapReduce job which finds the k nearest neighbors 

of an object and find the weight of the object with 

respect to the k nearest neighbors. 

The immediate issue that comes for this MapReduce is how 

to divide up the work of pairing up entities and calculate 

the distance for each pair. The idea is to partition each set 

of objects and pair up the partitions from each object. The 

partitioning can be done by hashing the object Id.The Id of 

each object is hashed. For each object type we get a set of 

hash values.  All the possible combination of hash values 

for the two object types can be taken. For each hash value 

pair, we pair up the objects from each type falling in 

the two hash values. The distance computation between 

objects for each hash value pair is distributed among the 

reducers. The mapper output key is a function of two hash 

values. The following function is used to generate the 

mapper output key 

key = (hash(SID) %  hashBucketCount) * 

hashBucketCount + hash(TID) % hashBucketCount 

where SID = Source object ID ,TID = Target object ID and 

hashBucketCount = Number of hash buckets, which is 

configurable. To distribute the load uniformly across 

reducers through Hadoop‟s default reducer partitioner, 

hashBucketCount should be chosen properly. For example, 

if the value chosen is 10, there will be 200 unique values 

for the key. The values for a given mapper key will contain 

instances of objects of both types. Since we have to pair up 

instances of one type entity with instances of another type, 

we need a way to segregate the instances, so instances of 

one type appears before the instances of the other type in 

the list of values when the reducer gets invoked. This will 

enable easier nested loop join. The key defined earlier will 

be used as the base part of the key. The key is enhanced so 

that it will ensure that that the source entities will appear 

before the target entities. The mapper of Average 

Distance has the first object ID along with the distance as 

the key and the distance and the second object ID as the 

value. A secondary sorting by the distance on the key can 

be performed. The first object ID is the base part of the key 

and the distance is the key extension. In the reducer, for a 

given entity we get all the other objects sorted by distance. 

The reducer retains the first k neighbouring objects and 

finds the average distance to them. 

There are number of ways to detect anomalies from the 

result, as follows 

1) Select the top n after sorting the result by descending 

order of the average distance  

2) Select all with average distance over a predefined 

threshold after sorting the result by the descending 

order of the average distance. 
 

III.  MAPREDUCE BASED SOLVING SET 

ALGORITHM 
 

We propose to modify the solving set algorithm so as to 

fit into the MapReduce framework of Hadoop. To design 

the algorithm in Hadoop, the concept of chaining 

MapReduce jobs is used. Chaining means executing 

multiple MapReduce jobs one after the other. In this 

method, there will be multiple stages of MapReduce in 

which there will be an Initial MapReduce Stage, a number 

of intermediate stages and a final stage. The numbers of 

intermediate stages are user controlled. 
 

A. Initial Stage 
 

The initial MapReduce phase takes as input the dataset, 

outputs a candidate set (initially random).The output from 

the initial MapReduce phase is fed into the intermediate 

stage. 
 

B. Intermediate Stage 
 

The intermediate stage contains the following modules 

1) A supervisor MapReduce module which takes as input 

the candidate objects, stores it‟s true as well as upper 

bound weights and generates new candidate objects by 

selecting objects with top n upper bound weight. 

2) The Similarity MapReduce module which takes as 

input, output from supervisor MapReduce module and 

finds the distance between the candidate set objects and 

all other objects which is stored in the HDFS. 

3) The output from similarity MapReduce module is fed 

into Compute Weight MapReduce module which finds 

K nearest neighbors of each candidate objects and 

thereby calculates its true weight. This module also 

finds the upper bound weights of all the objects and 

makes the objects with upper bound weight less than 

the least true weight, non-active.ie they cannot be 

considered as anomalies and are excluded in further 

MapReduce stages. The module emits as output objects 

along with its weights. In the next intermediate phase 

the result of ComputeWeight MapReduce module fed 

as input to the supervisor MapReduce module which 

updates the weight information which it stored about 

the candidate objects and  emits top n upper bound 

weighed objects as the output. In the successive 

intermediate stages new candidates will be generated 

and the supervisor dynamically changes the candidate 

objects by comparing the weights. When the supervisor 

MapReduce module receives the same candidate set as 

it generated in the previous iteration the algorithm 

terminates. 
 

C. Final Stage 
 

The output from the final intermediate stage is fed into the 

final Map Reduce stage which writes the anomaly objects 

to a file that can be accessed by the user. 
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IV. EXPERIMENTS 
 

The Distributed solving set algorithm is coded in Java and 

the communications are done through the Java libraries 

implementing the TCP sockets. As experimental platform, 

we used 6 workstations, each equipped with a Intel 2 GHz 

processor and 2 GB of RAM, interconnected by an 

Ethernet network. The dataset used in the experiment is 

Poker which is obtained from the real data set Poker 

Hands, available at UCI repository, by removing the class 

label. The Poker consists of 1000000 instances of10 

attributes. For Map Reduce implementation of anomaly 

detection a Hadoop cluster consisting of 6 nodes were set 

up. Experimental results showed that the distributed 

strategies are more efficient than single node nested loop 

approaches. 
 

The Map Reduce based strategies holds the following 

advantages over the distributed solving set algorithm. 

1) It can resolve scalability issues that comes with 

anomaly detection over big data due to use of 

Hadoop system which is highly scalable 

2) The reliability of the system is high as the data is 

stores in the HDFS 
 

V. CONCLUSION 
 

We aimed at parallelizing various strategies that can are 

used in anomaly detection task. We first discussed the basic 

techniques used in distance based anomaly detection. The 

solving set algorithm and the distributed solving set 

algorithm for anomaly detection is studied and 

implemented. The possibility of using MapReduce model 

using Hadoop for anomaly detection is studied and a nested 

loop based anomaly detection algorithm is implemented in 

Hadoop framework. We also propose a MapReduce based 

solving set algorithm for solving the anomaly detection 

task. We conclude that the MapReduce based strategies 

may be more suitable for anomaly detection in big datasets.  

We aim to learn more machine learning techniques like 

SVM and parallelize them so as to work with MapReduce 

model. We also aim to develop distributed algorithms for 

statistical based and clustering based anomaly detection 

methods and compare the results with distance based 

methods. 
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